Output Feedback Neural Network Adaptive Robust Control With Application to Linear Motor Drive System

نویسندگان

  • J. Q. Gong
  • Bin Yao
چکیده

In this paper, neural networks (NNs) and adaptive robust control design method are integrated to design a performance oriented control law with only output feedback for a class of single-input-single-output nth order nonlinear systems in a normal form. The nonlinearities in the system include repeatable unknown nonlinearities and nonrepeatable unknown nonlinearities such as external disturbances. In addition, unknown nonlinearities can exist in the control input channel as well. A high-gain observer is employed to estimate the states of system. All unknown but repeatable nonlinear functions are approximated by the outputs of multilayer neural networks with the estimated states as inputs to achieve a better model compensation. All NN weights are tuned on-line. In order to avoid possible divergence of on-line tuning, discontinuous projections with fictitious bounds are used in the weight adjusting law to make sure that all the weights are adapted within a prescribed range. Theoretically, the resulting controller achieves a guaranteed output tracking transient performance and a guaranteed final tracking accuracy in general. Certain robust control terms is then constructed to effectively attenuate various model uncertainties and estimate errors. Furthermore, if all the states are available and the unknown nonlinear functions are in the functional ranges of the neural networks, an asymptotic output tracking is also achieved to retain the perfect learning capability of NNs in the ideal situation provided that the ideal NN weights fall within the prescribed range. The output feedback neural network adaptive robust control is then applied to the control of a linear motor drive system. Experiments are carried out to show the effectiveness of the proposed algorithm and the excellent output tracking performance. DOI: 10.1115/1.2199860

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Control of Encoderless Synchronous Reluctance Motor Drives Based on Adaptive Backstepping and Input-Output Feedback Linearization Techniques

In this paper, the design and implementation of adaptive speed controller for a sensorless synchronous reluctance motor (SynRM) drive system is proposed. A combination of well-known adaptive input-output feedback linearization (AIOFL) and adaptive backstepping (ABS) techniques are used for speed tracking control of SynRM. The AIOFL controller is capable of estimating motor two-axis inductances ...

متن کامل

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

An Adaptive Nonlinear Controller for Speed Sensorless PMSM Taking the Iron Loss Resistance into Account (RESEARCH NOTE)

In this paper, an adaptive nonlinear controller is designed for rotor Surface Permanent Magnet Synchronous Motor (SPMSM) drive on the basis of Input-Output Feedback Control (IOFC), and Recursive Least Square (RLS) method. The RLS estimator detects the motor electromechanical parameters, including the motor iron loss resistance online. Moreover, a Sliding-Mode (SM) observer is developed for onli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006